Instituto de Ast	Universidade de São Paulo ronomia, Geofísica e Ciênc	
I	PROJETO PEDAGÓGICO 2022	0
I	Departamento de Astronomi	ia

PROJETO PEDAGÓGICO DO CURSO DE BACHARELADO EM ASTRONOMIA DO IAG/USP

Versão: Junho de 2021

1. PERFIL DO GRADUANDO

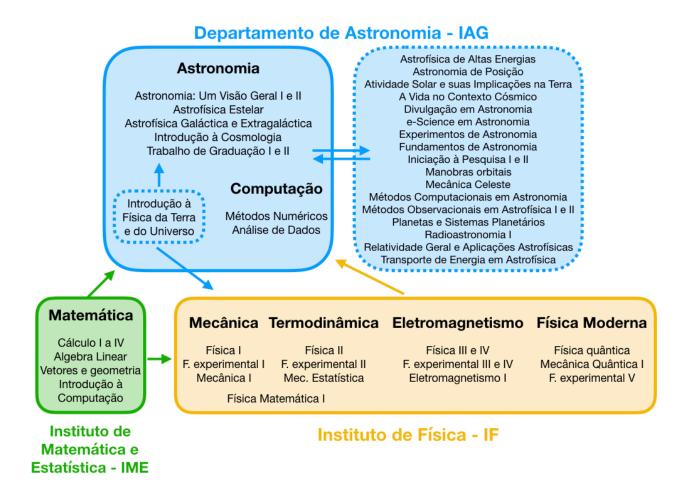
O curso é destinado a estudantes interessados em um amplo conhecimento em Astronomia Moderna e em direcionar suas aptidões em Física e Matemática para aplicações em Astronomia, além de obter um contato o mais cedo possível com a pesquisa nesta área.

Visando adquirir a formação sólida requerida para a construção de um quadro teórico-prático global, significativo e próximo dos desafios presentes na realidade profissional em que irá atuar, o graduando terá acesso a: (1) uma forte base em Física e Matemática, necessária para seguir a pósgraduação em Astronomia ou áreas afins; (2) um curso flexível e multidisciplinar, permitindo várias trajetórias que atendam as diferentes vocações; (3) acompanhamento contínuo de um tutor acadêmico, para melhor optar entre as diferentes vertentes do currículo oferecido.

2. OBJETIVOS DO CURSO

O curso de Astronomia busca atender o papel do ensino superior, no qual o processo de ensino-aprendizagem deve estar vinculado à realidade sociocultural na qual se insere o acadêmico. A educação deve preparar cada indivíduo para compreender o outro e a si mesmo, através de um melhor conhecimento do mundo contemporâneo. Nesse sentido, as Ciências Naturais reunidas são de grande importância no estudo de questões fundamentais sobre o Universo, a Terra e suas origens. O Projeto Pedagógico deste curso de graduação se beneficia da multidisciplinaridade intrínseca à Astronomia, incluindo seus aspectos científicos, tecnológicos e culturais.

Entre as áreas de pesquisa básica, a Astronomia tem a vantagem de oferecer um espaço de aplicação dos conhecimentos de Física e Matemática de forma atrativa e estimulante, para o melhor entendimento das leis que regem o Universo. Além disso, a tecnologia de ponta utilizada no desenvolvimento da pesquisa em Astronomia fornece uma base instrumental, de aplicação e de difusão, não só preparando o graduando para a carreira científica, mas abrindo também portas para a inserção no mercado de trabalho, de acordo com as habilidades e competências descritas a seguir.


3. COMPETÊNCIAS E HABILIDADES

O caráter interdisciplinar do curso prepara o bacharel para diversas possibilidades de atuação, que podem ser separadas nos seguintes principais ramos: pesquisa científica; instrumentação científica; ciências e técnicas espaciais; computação; difusão científica e ensino.

Além de poder seguir uma pós-graduação em Astronomia ou áreas afins, o graduado estará apto para atuar em cargos técnicos ou administrativos de: observatórios astronômicos; institutos de pesquisa; empresas de tecnologia; órgãos governamentais; difusão: imprensa, museus, planetários, jornais, etc.

4. ORGANIZAÇÃO DO CURSO

A organização do núcleo de disciplinas obrigatórias e a articulação entre os conteúdos são apresentadas no Diagrama 1. A interligação entre os tópicos de Astronomia com as principais áreas da Física, como Mecânica, Termodinâmica, Eletromagnetismo e Física Moderna, são apresentados na forma de conjuntos de disciplinas correlacionadas. Nesses conjuntos também são indicadas as disciplinas de Matemática e Computação contempladas no curso.

Diagrama 1. Matriz Curricular do Bacharelado em Astronomia. Disciplinas obrigatórias (traços cheios) e optativas eletivas (traços pontilhados) oferecidas pelo Departamento de Astronomia (AGA/IAG) e articulação entre as disciplinas oferecidas pelo Instituto de Matemática e Estatística (IME) e Instituto de Física (IF). As setas **não indicam** uma sequência, mas sim uma **interligação** entre as diferentes áreas.

5. DESENVOLVIMENTO DOS CONTEÚDOS

Uma das formas de se aumentar a eficiência do processo de ensino-aprendizagem é proporcionar ao aluno um envolvimento direto com a problematização relacionada com sua área de interesse. No caso particular da Astronomia, isto envolve aumentar seu conhecimento a respeito das aplicações da Física e da Matemática nos objetos de estudo.

Assim, ao longo de todo o curso são oferecidas disciplinas específicas de Astronomia, seguindo uma linha crescente em nível de dificuldade, acompanhada da apresentação, também gradual, das "ferramentas" de Física e Matemática previstas no currículo. Os conteúdos considerados essenciais são apresentados em um conjunto de disciplinas obrigatórias, descritas na Seção 5.1.

As diferentes possíveis vertentes são escolhidas a partir de uma ampla lista de disciplinas optativas e trilhadas com o acompanhamento de um tutor acadêmico que auxiliará o aluno na composição de uma especialização mais adequada para cada vocação. A lista de disciplinas optativas oferecidas tem sido incrementada desde a criação do curso de forma a melhor atender às expectativas e necessidades dos graduandos. A Seção 5.4 apresenta conjuntos sugeridos de disciplinas optativas eletivas, a título de ilustração de algumas possíveis vertentes.

5.1. Carga Horária

O curso é constituído de disciplinas obrigatórias, optativas eletivas e optativas livres. A diferença entre estes dois últimos tipos é que as optativas eletivas devem necessariamente ser escolhidas de uma lista de disciplinas (item 5.3). A carga horária de cada disciplina é medida em termos de créditos-aulas (que correspondem a 15h/crédito) e créditos-trabalho (30h/crédito). A tabela abaixo lista a carga horária do Bacharelado em Astronomia, de acordo com os diferentes tipos de disciplinas.

	Créditos-Aula	Créditos-Trabalho
Obrigatórias	124	12
Optativas Eletivas	28	0
Optativas Livres	12	0
Ativ. Acad. Complementares	0	1
Total de Créditos	164	13
Carga Horária	2460 h	390 h
Carga Horária Total	Carga Horária Total 2850 h	

5.2. Disciplinas Obrigatórias

Os conteúdos relacionados à Astronomia, desenvolvidos em 9 disciplinas, são resumidos nos itens 5.2.a a 5.2.c, enquanto os de Física e Matemática são descritos no item 5.2.d. De um total geral de 177 créditos, são necessários 137 créditos em disciplinas obrigatórias para o aluno concluir o curso, sendo 124 créditos-aula e 13 créditos-trabalho. Assim, de uma carga horária total do curso de 2850 h, 2250 h são das disciplinas obrigatórias. A relação das disciplinas obrigatórias com o respectivo semestre ideal e requisitos podem ser encontradas em

https://uspdigital.usp.br/jupiterweb/listarGradeCurricular?codcg=14&codcur=14030&codhab=1&tipo=N

5.2.a. Disciplinas Específicas Introdutórias

Os primeiros contatos com os tópicos relacionados com a área são realizados através de duas disciplinas de introdutórias:

• Astronomia: uma Visão Geral I e II. Oferecidas no primeiro ano do curso com o objetivo de proporcionar o primeiro contato com as diversas áreas da Astronomia. Os tópicos são abordados com destaque para as últimas descobertas e as questões ainda em aberto nesse campo de pesquisa. Para embasar a apresentação dos temas abordados, os conceitos básicos são vistos de forma introdutória e qualitativa. Os mesmos conceitos serão apresentados com mais profundidade nas demais disciplinas obrigatórias especificas da área. Na primeira parte, "Astronomia: Uma Visão Geral I" (AGA0100, oferecida no primeiro semestre do curso), são vistos os tópicos referentes a: instrumentação astronômica, Sistema Solar e exoplanetas, e estrelas. Em continuidade ao que foi abordado na disciplina AGA0100, a segunda parte, "Astronomia: Uma Visão Geral II" (AGA0101), apresenta no segundo semestre do curso os tópicos referentes a: Via Láctea, galáxias e cosmologia.

5.2.b. Disciplinas Específicas de Aprofundamento

Três disciplinas de nível intermediário ou mais avançado apresentam os conteúdos relacionados a:

- <u>Astrofísica Estelar (AGA0293)</u>. Propriedades físicas das estrelas; atmosferas estelares; estrutura estelar; formação estelar; evolução estelar.
- Astronomia Galáctica e Extragaláctica (AGA0299). A Galáxia; classificação de galáxias; luminosidade, cores e espectro de galáxias; galáxias elípticas; galáxias espirais; formação estelar; núcleos ativos de galáxias; determinação de distâncias; distribuição local de galáxias; grupos e aglomerados; estrutura em grande escala.
- <u>Introdução à Cosmologia (AGA0416).</u> Introdução histórica; o Universo em expansão; cosmologia e relatividade geral; o Big Bang; a inflação; desacoplamento matériaradiação; formação das estruturas; constante cosmológica e energia escura.

5.2.c. Disciplinas de Computação e de Iniciação Científica

Os conteúdos de aplicação de Astronomia oferecidos em disciplinas avançadas de computação e em projetos de iniciação à pesquisa são ministrados em 4 disciplinas:

- Métodos Numéricos em Astronomia (AGA0503). Introdução (linguagens de computador e cálculo numérico; erros, precisão e aritmética de ponto flutuante); matrizes e sistemas lineares; interpolação e extrapolação; integração numérica; zeros de funções; otimização de funções; equações diferenciais ordinárias. Aplicações de astronomia serão exploradas ao longo do curso.
- Análise de Dados em Astronomia (AGA0505). Esta disciplina aborda tópicos fundamentais da estatística aplicada à análise de dados astronômicos. Introdução à estatística; teoria de ruído em Astronomia; introdução à análise de imagens; introdução à análise de espectros; introdução à linguagem R.
- Trabalho de Graduação (AGA0296 TG I e AGA0298 TG II). Desenvolvimento de projetos de pesquisa no último ano do curso para realizar o Trabalho de Conclusão de Curso (TCC). O aluno pode optar por realizar um projeto diferente a cada semestre ou continuar com um mesmo projeto no semestre subsequente. Por meio destas disciplinas é possível oferecer um conjunto maior de atividades experimentais para os alunos interessados, oferecendo assim, a experiência e a especialização necessárias para uma aplicação direta no mercado de trabalho. Para isso, temos buscado uma interação ainda maior com o IF e a Escola Politécnica (EP), no que se refere à utilização de laboratórios, além daqueles já disponíveis no IAG. Além disso, docentes de outras Unidades da USP, tais como FFLCH¹ e ECA², por exemplo, podem atuar na coorientação de alunos que realizam um TCC relacionado com a vertente Ensino e Divulgação.

Para alunos do terceiro ano, que desejarem formalizar as atividades de iniciação científica, na forma de contagem de créditos, são oferecidas as disciplinas optativas AGA0601 e AGA0602 (Iniciação à Pesquisa I e II), cujo desenvolvimento é semelhante aos TGs, mas de forma mais introdutória.

5.2.d. Disciplinas Obrigatórias de Física e Matemática

Os conteúdos de Matemática oferecidos pelo IME são abordados nas disciplinas de Cálculo I a IV, Álgebra Linear, Geometria Analítica e Introdução à Computação, totalizando 7 disciplinas. A carga horária das disciplinas obrigatórias de Matemática é de 510 h, ou 18% do total.

Os conteúdos fundamentais de Física oferecidos pelo IF são abordados nas disciplinas de Física I a IV e Física Quântica (cobrindo o ciclo básico de conteúdos relativos à mecânica clássica, termodinâmica, mecânica estatística, eletromagnetismo, ondas, relatividade e física Moderna), além das respectivas disciplinas práticas de Física Experimental I a V. Os conteúdos mais avançados de

Faculdade de Filosofia. Letras e Ciências Humanas

Escola de Comunicações e Artes

Física serão contemplados por Física Matemática I, Mecânica I, Mecânica Estatística, Eletromagnetismo I e Mecânica Quântica I, em um total de 15 disciplinas. Outras disciplinas mais específicas da Física ou Matemática podem ser escolhidas entre as optativas. A carga horária das disciplinas obrigatórias de Física soma 1140, ou 40% do total.

5.3. Disciplinas Optativas Eletivas

Para uma complementação da formação do astrônomo, o aluno deverá cursar disciplinas optativas, no total de 40 créditos, sendo 28 em disciplinas optativas eletivas e 12 em disciplinas optativas livres. As optativas poderão ser escolhidas entre as disciplinas oferecidas pelo IAG ou outras Unidades da USP, tais como: IF, IME, EP, FE³, ECA⁴ e FFLCH⁵. Além disso, firmamos convênio com a Universidade Federal do ABC com o objetivo de cooperação acadêmica nas áreas de astronomia, instrumentação e ciências e espaciais. A relação das disciplinas optativas eletivas com o respectivo semestre ideal e requisitos podem ser encontradas em:

https://uspdigital.usp.br/jupiterweb/listarGradeCurricular?codcg=14&codcur=14030&codhab=1&tipo=N

5.4. Vertentes Sugeridas

A seguir são apresentadas algumas das possíveis vertentes sugeridas aos alunos, na orientação de escolha de optativas eletivas.

5.4.a. Lista sugerida de disciplinas optativas da vertente "Pesquisa Básica"

Código	Disciplina	Período Ideal
AGA0502	Planetas e Sistemas Planetários	3°
4302307	Física Matemática II	5°
4300337	Introdução à Relatividade	5°
4302306	Mecânica II	6°
4302314	Física Experimental VI	6°
AGA0319	Relatividade Geral e Aplicações Astrofísicas	6°
AGA0315	Astrofísica de Altas Energias	6°
4302304	Eletromagnetismo II	7°
4302404	Mecânica Quântica II	7°
AGA0506	Transporte de Energia em Astrofísica	7°

Outras disciplinas de interesse são: Mecânica Analítica II (4302306); Física Nuclear (4302404); Termodinâmica (4302308); Introdução à Física Nuclear (4302406); Relatividade Restrita (4302421); Introdução à Espectroscopia (4300425); Introdução ao Caos (4300320); Fenômenos Não-Lineares em Física: Introdução ao Caos Determinístico e Sistemas Dinâmicos (4300417); Introdução à Física de Partículas Elementares (4300422); Introdução à Física Atômica e Molecular (4300315); Introdução à Relatividade Geral (4300433); Introdução à Física do Estado Sólido (4300402).

Escola de Comunicações e Artes

Faculdade de Educação

⁵ Faculdade de Filosofia, Letras, Ciências e Humanidades

5.4.b. Lista sugerida de disciplinas optativas da vertente "Ciências Espaciais"

Essa vertente tem três possíveis ramos, contando com disciplinas oferecidas pela Escola Politécnica:

- 1. Satélites: Programação para Automação (PMR2440); Engenharia de Comunicações (PTC2359), Dinâmica dos Fluidos Computacional (PME2556).
- Controle: Eletrônica Digital para Mecatrônica (PMR2410), Computação para Automação (PMR2300), Controle e Automação I (PMR2360); Controle e Automação II (PMR2400); Modelagem e Simulação (PTC2415), Fundamentos de Engenharia de Controle (PTC2671).
- 3. Missões Espaciais: Mecânica dos Fluidos (PME2230), Dinâmica dos Fluidos Computacional (PME2556).

Também sugerimos disciplinas, do IAG e de outras Unidades, de interesse para as três especialidades acima: Astronomia de Posição (AGA0106); Mecânica Celeste (AGA0309); Manobras Orbitais (AGA0521); Sensoriamento Remoto Multiespectral (AGA0523); Introdução à Geodésia (AGG0208); Meteorologia Física II (ACA0326); Meteorologia por Satélite (ACA0413); Princípios de Oceanografia por Satélite (IOF0240); Eletromagnetismo II (4300304).

5.4.c. Lista sugerida de disciplinas optativas da vertente "Instrumentação"

Para essa vertente pode-se adotar várias das disciplinas sugeridas no item 5.4.b. Além daquelas, incluímos outras de interesse da área de instrumentação:

Código	Disciplina	Período Ideal
4300228	Tratamento Estatístico de Dados em Física Experimental	4°
AGA0414	Métodos Observacionais em Astrofísica I	5°
4300327	Introdução à Ótica Moderna	6°
AGA0524	Métodos Observacionais em Astrofísica II	7°
AGA0525	Radioastronomia I	8°

5.4.d. Lista sugerida de disciplinas optativas da vertente "Ensino e Divulgação Científica"

Elementos de Geofísica (AGG0110); Experimentos de Astronomia (AGA0317); Laboratório de Física da Terra e do Universo (1400110); Divulgação em Astronomia (AGA0421); Física Aplicada (4300463); Elementos e Estratégia para o Ensino de Física (4300356); Tópicos de História da Física Clássica (4300353); Propostas e Projetos para o Ensino de Física (4300358); Tecnologias da Informação e Comunicação no Ensino de Física (4300459).

Jornalismo Científico (CEJ0551); História das Ciências (EDM0684); Natureza, Cultura Científica e Educação (EDM0678); Produção Audiovisual e Multimídia para o Ensino de Ciências (EDM0682); Didática II (EDM0112); Política e Organização da Educação Básica no Brasil (EDA0463); Metodologia do Ensino de Física (EDM0425); Metodologia do Ensino de Física II (EDM0426); Ensino a Distância (EDM0670); Mídia e Educação: um debate contemporâneo (EDF0681); Metodologia do Ensino de Ciências (EDM0329).

Além das disciplinas acima listadas, sugerimos também algumas disciplinas oferecidas pela FFLCH que podem ser de interesse para esta, bem como outras vertentes: Lógica I (FLF0258); Teoria do Conhecimento e Filosofia da Ciência I (FLF0368); Teoria do Conhecimento e Filosofia da Ciência III (FLF0445); Filosofia e História Ciência Moderna (FLF0449); Filosofia da Física (FLF0472).

5.4.e. Lista sugerida de disciplinas optativas da vertente "Computacional"

Código	Disciplina	Período Ideal
MAC0122	Princípios de Desenvolvimento de Algoritmos	4°
MAC0417	Visão e Processamento de Imagens	5°
MAC0425	Inteligência Artificial	6°
MAC0219	Programação Concorrente e Paralela	7°
MAC0323	Algoritmos e Estruturas de Dados II	7°
AGA0513	e-Science em Astronomia	7°
AGA0511	Métodos Computacionais em Astronomia	8°
MAC0468	Tópicos em Computação Gráfica	8°
AGA0512	Análise de Dados em Astronomia II	8°

5.5. Atividades Acadêmicas Complementares

As Atividades Acadêmicas Complementares (AACs) são obrigatórias nas estruturas curriculares dos cursos de graduação e têm sua exigência embasada nas Diretrizes Curriculares Nacionais e Lei de Diretrizes e Bases da Educação. As AACs têm como objetivo privilegiar o enriquecimento e a complementação da formação profissional, científica, social e cultural do estudante, podendo ser realizadas de acordo com seu interesse e afinidade, nas áreas de ensino e formação sociocultural, responsabilidade social e interesse coletivo, pesquisa e formação profissional e extensão e aperfeiçoamento. A realização de atividades acadêmicas complementares não se confunde com a do Trabalho de Conclusão de Curso.

A carga horária curricular obrigatória de AACs é de 1 crédito-trabalho (30 h). As AACs aceitas e reconhecidas são aquelas dispostas nos artigos 4°, 5° e 6° da Resolução CoG, CoCEx e CoPq N° 7788, de 26 de agosto de 2019. A normatização da carga horária atribuída e documentos comprobatórios de cada AAC é feita pelas Comissões de Graduação, Pesquisa e Cultura e Extensão do IAG.

5.6. Tutoria Científico-Acadêmica

Desde o primeiro semestre, o aluno ingressante é encorajado a se envolver em atividades de pesquisa, extensão e ensino através das tutorias científico-acadêmicas. Ao escolher um professor ou pós-doutor como tutor acadêmico no primeiro ano, o aluno tem a oportunidade de realizar estudos dirigidos e outras atividades, tais como participação em reuniões de grupo de pesquisa, que permitam um primeiro contato com o dia-a-dia da pesquisa. Espera-se que as tutorias evoluam, naturalmente, em projetos de pesquisa, extensão ou ensino já a partir do 2º ano do curso (ICs). Neste sentido, as tutorias integram um arco conceitual que se inicia já no 1º ano e conclui-se no 4º ano, com os TCCs.

5.7. Atividades Práticas e Projetos

O curso pode proporcionar aos seus alunos a realização de atividades práticas e projetos, que os aproximem da realidade profissional do pesquisador em Astronomia. A exemplo das atividades extracurriculares já adotadas pelo AGA nas suas disciplinas de graduação, oferecidas para outras Unidades, o aluno do Bacharelado em Astronomia terá acesso às seguintes atividades:

- Tutorias científico-acadêmicas (1º ano), Iniciação Científica (2º ano em diante).
- Laboratório de óptica (bancada óptica, espectroscopia).
- Laboratório de Astro-informática (clusters computacionais para desenvolvimento de

projetos de pesquisa e atividades de ensino).

- Laboratório de Informática (atividades observacionais e experimentais).
- Observatórios do IAG (CUASO e Observatório Abrahão de Moraes OAM em Valinhos).
- Viagens Didáticas: Observatório do Pico dos Dias/Laboratório Nacional de Astrofísica;
 OAM; Radio-observatório do Itapetinga em Atibaia; Parque CienTec; Museu de Ciências Catavento Cultural e Educacional.
- Acompanhamento de Observações do SOAR na Estação de Observações Remotas do IAG.
- Participação nas reuniões anuais da Sociedade Astronômica Brasileira para apresentação dos trabalhos desenvolvidos nos projetos de Iniciação Científica. Participação nos Simpósios de Iniciação Científica do IAG e da USP.
- Mobilidade Estudantil Internacional estágios supervisionados em universidades conveniadas à USP (Programa de Internacionalização).

6. Considerações Finais

O presente Projeto Pedagógico apresenta o curso de Bacharelado em Astronomia. É importante salientar a semelhança do Bacharelado em Astronomia com o Bacharelado em Física do IFUSP, no que se refere ao conteúdo de Física e Matemática. Em sua maioria, as mesmas disciplinas obrigatórias são oferecidas na mesma sequência em ambos os cursos, assim como nos outros Bacharelados do IAG (Geofísica e Meteorologia). Essa semelhança, que equivale a um ciclo básico comum, garante uma grande facilidade de transferência interna entre tais cursos, oferecendo aos alunos uma maior flexibilidade de escolha, caso prefiram mudar de curso a partir do 2º ano. Os alunos formados no Bacharelado em Astronomia podem obter um segundo diploma em Física pelo IF cursando apenas um ou dois semestres naquela unidade.